FANDOM


There are many things in the game that follow this mechanism to choose different effects/types randomly such as Golden cookie, Wrath cookie, Force the Hand of Fate, Garden mutations, and Sugar Lump types. Basically the mechanism starts with a pool which contains certain effects. Then it adds different effects to the pool randomly. Finally it chooses one effect from the pool with equal probability.

Garden MutationsEdit

At each tick, the game will check every empty plots for possible mutation recipes. If certain conditions are satisfied[note 1], there will be a corresponding base chance to add the mutated plant into the candidate pool. The final outcome will be chosen from the candidate pool with equal probability. If the soil is Woodchips, the above procedure will loop 3 times at each tick.

For example, if an empty plot is surrounded by 8 Queenbeets, there are 3 possible mutations with an equal base chance of p=0.001; Juicy Queenbeet, Duketater and Shriekbulb. The candidate pool has 2^3=8 possibilities and can be grouped into four kinds according to the size. All pools in the same group has the same probability to be generated.

Group ID Pool
size
Pool generation
probability
Number
of pools
G0 0 (1-p)^3 1
G1 1 p(1-p)^2 3
G2 2 p^2(1-p) 3
G3 3 p^3 1

Among the all eight pools, there are four pools which contain Shriekbulbs: 1, 2 and 1 belong to G1, G2 and G3, respectively. The probability of picking Shriekbulbs in pool Gi will be 1/i. After adding all four pools together, the total probability of picking Shriekbulbs is P=p(1-p)^2+2*p^2(1-p)/2+p^3/3=p-p^2+p^3/3=0.000999. Since in this case all three mutating plants have the same base chance, the probability of picking Duketaters and Juicy Queenbeets will also be P=p-p^2+p^3/3. Hence the probability of picking nothing is P0=1-3P.

If the soil is Woodchips, the procedure will run three times. The final result will be the plant picked in the last round. If no plant was picked in the last round, the final result will be the plant picked in the second round, and so on. The following table lists all three situations which give Shriekbulb after three rounds.

First round Second round Third round Probability
any result any result Shriekbulb P
any result Shriekbulb Nothing P*P0
Shriekbulb Nothing Nothing P*P0^2

Therefore the total probability of mutating Shriekbulbs after three loops will be W=P+P*P0+P*P0^2=3p-12p^2+28p^3-42p^4+42p^5-28p^6+12p^7-3p^8+p^9/3=0.002997. Hence the probability of picking nothing will be W0=1-3W=P0^3=0.991036.

Take another example, if an empty plot is surrounded by 2 Baker's Wheat, then there are three mutation candidates; Baker's Wheat, Thumbcorn and Bakeberry. These have a base chance of p1=0.2, p2=0.05 and p3=0.001, respectively. There are 2^3=8 possible candidate pools.

Candidate pool contents
Probability
Baker's Wheat Thumbcorn Bakeberry
Yes Yes Yes p1p2p3
Yes Yes No p1p2(1-p3)
Yes No Yes p1(1-p2)p3
No Yes Yes (1-p1)p2p3
Yes No No p1(1-p2)(1-p3)
No Yes No (1-p1)p2(1-p3)
No No Yes (1-p1)(1-p2)p3
No No No (1-p1)(1-p2)(1-p3)

The probability of picking Baker's Wheat, Thumbcorn, Bakeberry or nothing are:

  • Baker's Wheat: P1=p1p2p3/3+p1p2(1-p3)/2+p1(1-p2)p3/2+p1(1-p2)(1-p3)=0.194903
  • Thumbcorn: P2=p1p2p3/3+p1p2(1-p3)/2+(1-p1)p2p3/2+(1-p1)p2(1-p3)=0.0449783
  • Bakeberry: P3=p1p2p3/3+(1-p1)p2p3/2+p1(1-p2)p3/2+(1-p1)(1-p2)p3=0.000878333
  • Nothing: P0=(1-p1)(1-p2)(1-p3)=1-P1-P2-P3=0.75924

If the soil is Woodchips, the probability of picking Baker's Wheat, Thumbcorn, Bakeberry or nothing are:

  • Baker's Wheat: W1=P1+P1P0+P1P0^2=0.455233
  • Thumbcorn: W2=P2+P2P0+P2P0^2=0.105055
  • Bakeberry: W3=P3+P3P0+P3P0^2=0.00205151
  • Nothing: W0=P0^3=1-W1-W2-W3=0.43766

Force the Hand of FateEdit

The procedure of Force the Hand of Fate is a little different. For golden cookie, the procedure is:

Win:

  • Add Frenzy and Lucky to a pool.
  • If there is no Dragonflight buff active, add Click Frenzy.
  • 10% chance to add Storm, Storm and Blab to the pool.
  • 25% chance to add Building Special, if the you owned more than or equal to 10 total building.
    • For all building of which number more or equal to 10, choose one and buff according to the chosen building's amount. If no building has such quantity, choose Frenzy.
  • 15% chance to replace the pool with Storm Drop.
  • 0.01% chance to add Free Sugar Lump to the pool.
  • Pick a random effect from the list.

Note that there is 15% chance for the pool to be replaced completely instead of adding something into the pool. To handle this rule properly, consider two cases. First assume that the pool is never replaced.

Probability without Dragonflight (Win)
Frenzy=Lucky=C.Frenzy Storm Blab Building Sugar
0.2973144554 0.03214241071 0.01607120536 0.05982025893 0.00002275892857

Second, assume that the pool is always replaced:

Probability without Dragonflight (Win)
StormDrop Sugar
0.99995 0.00005

The actual probability will be mix of these two cases.

Probability without Dragonflight (Win)
Frenzy=Lucky=C.Frenzy Storm Blab Building StormDrop Sugar
0.2527172871 0.02732104911 0.01366052455 0.05084722009 0.1499925 0.00002684508929

Fail:

  • Add Clot and Ruin to a pool.
  • 10% chance to add Cursed Finger, Elder Frenzy to the pool.
  • 0.3% chance to add Free Sugar Lump to the pool.
  • 10% chance to replace the pool with Blab.
  • Pick a random effect from the list.
Probability (Fail)
Clot=Ruin Cursed Finger=Elder Frenzy Sugar Blab
0.4270815 0.0224865 0.000864 0.1

Golden/Wrath cookieEdit

Golden cookieEdit

For Golden cookie and Wrath cookie, there is an additional rule. Here is a detailed example for the procedure of picking effect of golden cookies in version 1.0466. For probability of Golden/Wrath cookie in current version, see Golden Cookie Probabilities.

  • Add Frenzy and Lucky to a pool.
  • 3% chance to add Chain to the pool, if at least 100,000 cookies have been baked in this game.
  • 10% chance to add Click Frenzy to the pool.
  • 80% chance to remove the previous effect from the pool, if it's there.
  • 0.01% chance to add Blab to the pool.
  • Pick a random effect from the pool.

Rule 5: "80% chance to remove the previous effect from the pool, if it's there." makes things more complicated but still doable. First we shall ignore the rule, and calculate the probability by listing all possible pools as mentioned above. (From now on we shall assume that at least 100,000 cookies have been baked.)

Pool Probability
# of effect Chain C.Frenzy Blab
5 X X X P1=0.03*0.1*0.0001
4 X X P2=0.03*0.1*0.9999
4 X X P3=0.03*0.9*0.0001
3 X P4=0.03*0.9*0.9999
4 X X P5=0.97*0.1*0.0001
3 X P6=0.97*0.1*0.9999
3 X P70=.97*0.9*0.0001
2 P8=0.97*0.9*0.9999

Therefore, the probability of picking Frenzy is: P1/5+(P2+P3+P5)/4+(P4+P6+P7)/3+P8/2=0.478568. The probability of picking Lucky is the same as Frenzy. The probability of picking Chain, Click Frenzy and Blab are P5/5+(P2+P3)/4+P4/3=0.00974976, P5/5+(P2+P5)/4+P6/3=0.0330825 and P5/5+(P3+P5)/4+P7/3=0.00003226 respectively. These probabilities are called primitive probabilities.

Primitive probability
Frenzy Lucky Chain C.Fenzy Blab
0.478568 0.478568 0.00974976 0.033082 0.00003226

However, due to rule 5, the actual probability depends on the previous cookie. For example, if the previous cookie was Frenzy, there is an 80% chance that we shall apply the following table.

Pool Probability
# of effect Chain C.Frenzy Blab
4 X X X P1=0.03*0.1*0.0001
3 X X P2=0.03*0.1*0.9999
3 X X P3=0.03*0.9*0.0001
2 X P4=0.03*0.9*0.9999
3 X X P5=0.97*0.1*0.0001
2 X P6=0.97*0.1*0.9999
2 X P7=0.97*0.9*0.0001
1 P8=0.97*0.9*0.9999

From the table, we can calculate the conditional probability:

Conditional probability
Previous Cookie Frenzy Lucky Chain C.Frenzy Blab
Frenzy 0 0.935954 0.0144995 0.0494984 0.0000478583

Remember that the actual probability should be a combination of 20% of primitive probability and 80% of conditional probability:

Actual probability
Previous Cookie Frenzy Lucky Chain C.Frenzy Blab
Frenzy 0.0957135 0.844477 0.0135496 0.0494984 0.00004783

The actual probability of Lucky is the same as Frenzy. For conditional probability of Chain, we shall consider the following table:

Pool Probability
# of effect Chain C.Frenzy Blab
4 X X X P1=0.03*0.1*0.0001
3 X X P2=0.03*0.1*.9999
3 X X P3=0.03*0.9*0.0001
2 X P4=0.03*0.9*0.9999
4 X X P5=0.97*0.1*0.0001
3 X P6=0.97*0.1*0.9999
3 X P7=0.97*0.9*0.0001
2 P8=0.97*0.9*0.9999

And the actual probability is:

Actual probability
Prev. Cookie Frenzy Lucky Chain C.Frenzy Blab
Chain 0.482368 0.482368 0.00194995 0.0332825 0.000032452

Repeating the process, we can build up the following table. Notice that since we add Blab after rule 5, the conditional/actual probability when the previous cookie was blab is the same as the primitive probability.

Current Cookie
Prev. Cookie Frenzy Lucky Chain Click Frenzy Blab
Frenzy 0.095713547 0.8444769536 0.013549572 0.0462151886 0.0000447386
Lucky 0.8444769536 0.095713547 0.013549572 0.0462151886 0.0000447386
Chain 0.482367547 0.482367547 0.001949952 0.033282502 0.000032452
Click Frenzy 0.4917004136 0.4917004136 0.009949752 0.006616502 0.0000329186
Blab/None 0.478567735 0.478567735 0.00974976 0.03308251 0.00003226

The table above is a transition matrix, the long term (stationary) probability can be found as the eigenvector of the transition matrix with eigenvalue 1.

The Long Term Probability
Frenzy Lucky Chain Click Frenzy Blab
47.121495% 47.121495% 1.3236432% 4.4289617% 0.0044052%

Using this, we can obtain the following table shows the final result. Each cell represents the "combo probability" or "pair probability" of golden cookies. The sum of every possible pair probability is 1.

Current Cookie
Prev. Cookie Frenzy Lucky Chain Click Frenzy Blab Total
Frenzy 4.5101654% 39.793016% 0.6384761% 2.1777288% 0.0021082% 47.121495%
Lucky 39.793016% 4.5101654% 0.6384761% 2.1777288% 0.0021082% 47.121495%
Chain 0.6384825% 0.6384825% 0.0025810% 0.0440542% 0.0000430% 1.3236432%
Click Frenzy 2.1777223% 2.1777223% 0.0440671% 0.0293042% 0.0001458% 4.4289617%
Blab 0.0021082% 0.0021082% 0.0000429% 0.0001457% 0.0000001% 0.0044052%
Total 47.121495% 47.121495% 1.3236432% 4.4289617% 0.0044052% 100%

Wrath cookieEdit

For wrath cookies, the procedure of determining effect is different:

  • Add Lucky, Clot and Ruin to a pool.
  • 30% chance to add Elder Frenzy and Chain to the pool.
  • If previous step fails (70%), 3% chance to add Chain to the pool, if at least 100,000 cookies have been baked this game.
  • 10% chance to add Click Frenzy to the pool.
  • 80% chance to remove the last effect from the pool, if it's there.
  • 0.01% chance to add Blab to the pool.
  • Pick a random effect from the pool.

However, the transition matrix can (assuming at least 100,000 cookies have been baked) still be made:

Current Cookie
Prev. Cookie Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Lucky 0.056962699 0.383759471 0.383759471 0.070598646 0.077087491 0.027805042 0.000027181
Clot 0.383759471 0.056962699 0.383759471 0.070598646 0.077087491 0.027805042 0.000027181
Ruin 0.383759471 0.383759471 0.056962699 0.070598646 0.077087491 0.027805042 0.000027181
E.Frenzy 0.296413112 0.296413112 0.296413112 0.011799806 0.075743544 0.023194559 0.000022754
Chain 0.297757059 0.297757059 0.297757059 0.070598646 0.012828785 0.023278556 0.000022835
C.Frenzy 0.290223955 0.290223955 0.290223955 0.059799006 0.065027901 0.004478916 0.000022311
Blab 0.284813495 0.284813495 0.284813495 0.058999029 0.064143927 0.022394582 0.000021977

And the long term probability can be calculated:

Long Term Probability
Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
27.832181% 27.832181% 27.832181% 6.6406924% 7.2047971% 2.6553223% 0.0026445%

The final table of pair probability then can be obtained:

Current Cookie
Prev. Cookie Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Lucky 1.5853962% 10.680863% 10.680863% 1.9649143% 2.1455130% 0.7738750% 0.0007565%
Clot 10.680863% 1.5853962% 10.680863% 1.9649143% 2.1455130% 0.7738750% 0.0007565%
Ruin 10.680863% 10.680863% 1.5853962% 1.9649143% 2.1455130% 0.7738750% 0.0007565%
E.Frenzy 1.9683883% 1.9683883% 1.9683883% 0.0783589% 0.5029896% 0.1540279% 0.0001511%
Chain 2.1452792% 2.1452792% 2.1452792% 0.5086489% 0.0924288% 0.1677173% 0.0001645%
C.Frenzy 0.7706381% 0.7706381% 0.7706381% 0.1587856% 0.1726700% 0.0118930% 0.0000592%
Blab 0.0007532% 0.0007532% 0.0007532% 0.0001560% 0.0001696% 0.0000592% 0.0000001%
Total 27.832181% 27.832181% 27.832181% 6.6406924% 7.2047971% 2.6553223% 0.0026445%

GrandmapocalypseEdit

The Grandmapocalypse has four phases: Appeased, Awoken, Displeased, Angered. For the first phase all the cookies will be golden, and for the last phase all cookies will be wrath.

In the two middle phases, the probability of wrath cookie is 1/3 and 2/3 respectively. If you clicked every cookies no matter what it is, then the transition matrix of these two phases can be obtained by the linear combination of transition matrix of Appeased phase (pure golden cookie) and transition matrix of Awoken phase (pure wrath cookie).

Let us show the golden transition matrix and wrath transition matrix first:

Golden Current Cookie
Prev. Cookie Frenzy Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Frenzy 0.095713547 0.8444769536 0 0 0 0.013549572 0.0462151886 0.0000447386
Lucky 0.8444769536 0.095713547 0 0 0 0.013549572 0.0462151886 0.0000447386
Clot/None 0.478567735 0.478567735 0 0 0 0.00974976 0.03308251 0.00003226
Ruin/None 0.478567735 0.478567735 0 0 0 0.00974976 0.03308251 0.00003226
E.Frenzy/None 0.478567735 0.478567735 0 0 0 0.00974976 0.03308251 0.00003226
Chain 0.482367547 0.482367547 0 0 0 0.001949952 0.033282502 0.000032452
C.Frenzy 0.4917004136 0.4917004136 0 0 0 0.009949752 0.006616502 0.0000329186
Blab/None 0.478567735 0.478567735 0 0 0 0.00974976 0.03308251 0.00003226
Wrath Current Cookie
Prev. Cookie Frenzy Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Frenzy/none 0 0.284813495 0.284813495 0.284813495 0.058999029 0.064143927 0.022394582 0.000021977
Lucky 0 0.056962699 0.383759471 0.383759471 0.070598646 0.077087491 0.027805042 0.000027181
Clot 0 0.383759471 0.056962699 0.383759471 0.070598646 0.077087491 0.027805042 0.000027181
Ruin 0 0.383759471 0.383759471 0.056962699 0.070598646 0.077087491 0.027805042 0.000027181
E.Frenzy 0 0.296413112 0.296413112 0.296413112 0.011799806 0.075743544 0.023194559 0.000022754
Chain 0 0.297757059 0.297757059 0.297757059 0.070598646 0.012828785 0.023278556 0.000022835
C.Frenzy 0 0.290223955 0.290223955 0.290223955 0.059799006 0.065027901 0.004478916 0.000022311
Blab 0 0.284813495 0.284813495 0.284813495 0.058999029 0.064143927 0.022394582 0.000021977

Then combine them in G:W=2:1 (Awoken) and G:W=1:2 (Displeased):

Awoken Current Cookie
Prev. Cookie Frenzy Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Frenzy 0.0638090 0.6579225 0.0949378 0.0949378 0.0196663 0.0196663 0.0382750 0.0000372
Lucky 0.5629846 0.0827966 0.1279198 0.1279198 0.0235329 0.0347289 0.0400785 0.0000389
Clot 0.3190452 0.4469650 0.0189876 0.1279198 0.0235329 0.0321957 0.0313234 0.0000306
Ruin 0.3190452 0.4469650 0.0189876 0.1279198 0.0235329 0.0321957 0.0313234 0.0000306
E.Frenzy 0.3190452 0.4178495 0.0988044 0.0988044 0.0039333 0.0317477 0.0297865 0.0000291
Chain 0.3215784 0.4208307 0.0992524 0.0992524 0.0235329 0.0055762 0.0299479 0.0000292
C.Frenzy 0.3278003 0.4245416 0.0967413 0.0967413 0.0199330 0.0283091 0.0059040 0.0000294
Blab 0.3190452 0.4139830 0.0949378 0.0196663 0.0196663 0.0278811 0.0295199 0.0000288
Displeased Current Cookie
Prev. Cookie Frenzy Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Frenzy 0.0319045 0.4713680 0.1898757 0.1898757 0.0393327 0.0472791 0.0303348 0.0000296
Lucky 0.2814923 0.0698796 0.2558396 0.2558396 0.0470658 0.0559082 0.0339418 0.0000330
Clot 0.1595226 0.4153622 0.0379751 0.2558396 0.0470658 0.0546416 0.0295642 0.0000289
Ruin 0.1595226 0.4153622 0.2558396 0.0379751 0.0470658 0.0546416 0.0295642 0.0000289
E.Frenzy 0.1595226 0.3571313 0.1976087 0.1976087 0.0078665 0.0537456 0.0264905 0.0000259
Chain 0.1607892 0.3592939 0.1985047 0.1985047 0.0470658 0.0092025 0.0266132 0.0000260
C.Frenzy 0.1639001 0.3573828 0.1934826 0.1934826 0.0398660 0.0466685 0.0051914 0.0000258
Blab 0.1595226 0.3493982 0.1898757 0.1898757 0.0393327 0.0460125 0.0259572 0.0000258

The final tables of pair probability are presented below:

Awoken Current Cookie
Prev. Cookie Frenzy Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Frenzy 2.090926% 21.55913% 3.110970% 3.110970% 0.644436% 0.996633% 1.254214% 0.001217%
Lucky 21.20543% 3.118624% 4.818239% 4.818239% 0.886392% 1.308101% 1.509599% 0.001465%
Clot 3.292897% 4.613170% 0.195973% 1.320273% 0.242885% 0.332295% 0.323291% 0.000315%
Ruin 3.292897% 4.613170% 1.320273% 0.195973% 0.242885% 0.332295% 0.323291% 0.000315%
E.Frenzy 0.692677% 0.907191% 0.214514% 0.214514% 0.008539% 0.068927% 0.064669% 0.000063%
Chain 1.015420% 1.328821% 0.313401% 0.313401% 0.074308% 0.017608% 0.094564% 0.000092%
C.Frenzy 1.177110% 1.524501% 0.347392% 0.347392% 0.071578% 0.101656% 0.021201% 0.000106%
Blab 0.001140% 0.001480% 0.000339% 0.000339% 0.000070% 0.000100% 0.000106% 0.000000%
Total 32.76850% 37.66609% 10.32110% 10.32110% 2.171094% 3.157614% 3.590935% 0.003574%
Displeased Current Cookie
Prev. Cookie Frenzy Lucky Clot Ruin E.Frenzy Chain C.Frenzy Blab
Frenzy 0.559120% 8.260622% 3.327530% 3.327530% 0.689297% 0.828557% 0.531611% 0.000518%
Lucky 8.745448% 2.171032% 7.948467% 7.948467% 1.462247% 1.736964% 1.054508% 0.001026%
Clot 3.103346% 8.080440% 0.738767% 4.977094% 0.915615% 1.062995% 0.575141% 0.000562%
Ruin 3.103346% 8.080440% 4.977094% 0.738767% 0.915615% 1.062995% 0.575141% 0.000562%
E.Fren. 0.698358% 1.563449% 0.865091% 0.865091% 0.034438% 0.235287% 0.115970% 0.000113%
Chain 0.822308% 1.837500% 1.015193% 1.015193% 0.240704% 0.047063% 0.136105% 0.000133%
C.Fren. 0.492380% 1.073631% 0.581251% 0.581251% 0.119763% 0.140199% 0.015596% 0.000078%
Blab 0.000477% 0.001045% 0.000568% 0.000568% 0.000118% 0.000138% 0.000078% 0.000000%
Total 17.52478% 31.06816% 19.45396% 19.45396% 4.377797% 5.114199% 3.004149% 0.002992%

Sugar LumpEdit

The method of picking sugar lump type is different from the above methods. The type determination procedure is as follows:

  • Add Normal to a pool.
  • If you have upgrades Sucralosia Inutilis, 15% chance to add Bifurcated to the pool, otherwise 10% chance to add Bifurcated to the pool.
  • 0.3% chance to add Golden to the pool.
  • 2% chance to add Caramelized to the pool.
  • 0%, 10%, 20% and 30% to add Meaty to the pool if the game is in Appeased, Awoken, Displeased and Angered phase of Grandmapocalypse respectively.
  • Pick a random effect from the pool.

Unlike the previous examples, the random number 0<P<1, which decides whether the candidate should be added into the pool or not, is generated only once through the whole process.

Type Probability
Normal PN=1
Bifurcated PB=0.1 or 0.15
Golden PG=0.003
Meaty PM=0.1×grandmas' anger level =0, 0.1, 0.2, 0.3
Caramelized PC=0.02

In the appeased stage, the outcomes are calculated as such, due to the lack of meaty lumps in this stage:

  • PGolden=PG/4
  • PCaramelized=(PC-PG)/3+PGolden
  • PBifurcated=(PB-PC)/2+PCaramelized
  • PNormal=(1-PB)+PBifurcated

In the awoken stage, the outcomes are calculated as such, due to bifurcated being either equal to or higher than meaty:

  • PGolden=PG/5
  • PCaramelized=(PC-PG)/4+PGolden
  • PMeaty=(PM-PC)/3+PCaramelized
  • PBifurcated=(PB-PM)/2+PMeaty
  • PNormal=(1-PB)+PBifurcated

In the remaining two stages, the outcomes are calculated as such, due to meaty always being higher than bifurcated:

  • PGolden=PG/5
  • PCaramelized=(PC-PG)/4+PGolden
  • PBifurcated=(PB-PC)/3+PCaramelized
  • PMeaty=(PM-PB)/2+PBifurcated
  • PNormal=(1-PM)+PMeaty

The results are as follows:

Phase of

Grandmapocalypse

Probability without Sucralosia Inutilis Average

number of lumps

Normal Bifurcated Golden Meaty Caramelized
Appeased 0.946417 0.046417 0.000750 0 0.006417 1.032250
Awoken 0.931517 0.031517 0.000600 0.031517 0.004850 1.022708
Displeased 0.881517 0.031517 0.000600 0.081517 0.004850 1.022708
Angered 0.831517 0.031517 0.000600 0.131517 0.004850 1.022708
Phase of

Grandmapocalypse

Probability with Sucralosia Inutilis Average

number of lumps

Normal Bifurcated Golden Meaty Caramelized
Appeased 0.921417 0.071417 0.000750 0 0.006417 1.046535
Awoken 0.906517 0.056517 0.000600 0.031517 0.004850 1.035208
Displeased 0.873183 0.048183 0.000600 0.073183 0.004850 1.032246
Angered 0.823183 0.048183 0.000600 0.123183 0.004850 1.032246

NotesEdit

  1. Some plants will prevent other plants from emerging. For example, if an empty plot is surrounded by 2 Crumbspores and 1 Everdaisy, Doughshrooms will never grow on that plot.